Constructing special almost disjoint families

Dilip Raghavan

National University of Singapore

Winter School in Abstract Analysis, International Center for Spiritual Rehabilitation, Hejnice January 31, 2014

A weakly tight family from $\mathfrak{s} \leq \mathfrak{b}$ Bibliography

Outline

イロト イロト イヨト イヨト

Э.

Recall:

Definition

An a.d. $\mathscr{A} \subset [\omega]^{\omega}$ is weakly tight if for any collection $\{b_n : n \in \omega\} \subset I^+(\mathscr{A})$, there exists $a \in \mathscr{A}$ such that $\exists^{\infty} n \in \omega [|a \cap a_n| = \omega]$.

 Recall that this is a weakening of ℵ₀-MAD, which in turn is essentially the same as Cohen-indestructible.

(日)

Recall:

Definition

An a.d. $\mathscr{A} \subset [\omega]^{\omega}$ is weakly tight if for any collection $\{b_n : n \in \omega\} \subset I^+(\mathscr{A})$, there exists $a \in \mathscr{A}$ such that $\exists^{\infty} n \in \omega [|a \cap a_n| = \omega]$.

- Recall that this is a weakening of ℵ₀-MAD, which in turn is essentially the same as Cohen-indestructible.
- One cannot directly apply Shelah's method to construct a weakly tight family. Why?

Definition

A partitioner of an a.d. family \mathscr{A} is a set $b \in I^+(\mathscr{A})$ with the property that $\forall a \in \mathscr{A} [a \subset b \lor |a \cap b| < \omega].$

э

- Suppose {b_n : n ∈ ω} is a family of pairwise disjoint partitioners for a weakly tight A.
- There cannot be *a* ∈ A which has infinite intersection with *b_n* and *b_m* for distinct *n* and *m*.
- However Shelah's method is explicitly designed to produce many pairwise disjoint partitioners (picture on board).

э

- Suppose {b_n : n ∈ ω} is a family of pairwise disjoint partitioners for a weakly tight A.
- There cannot be *a* ∈ *A* which has infinite intersection with *b_n* and *b_m* for distinct *n* and *m*.
- However Shelah's method is explicitly designed to produce many pairwise disjoint partitioners (picture on board).
- Solution: make two changes to the basic framework.
- First, each member of the a.d. family will be associated with a countable collection of nodes, and will be the union of a countable sequence of infinite subsets of ω.
- Second, each such countable sequence will be associated with its own node, and the collection *I*_η of countable sequences allowable at a node η will be chosen carefully.

э

Theorem (R. and Steprans[1])

Assume $s \le b$. Then there is a weakly tight family.

• As always fix an (ω, ω) -splitting family $\langle e_{\alpha} : \alpha < \mathfrak{s} \rangle$.

Definition

We say that a sequence $\vec{C} = \langle c_n : n \in \omega \rangle \subset [\omega]^{\omega}$ is a p.w.d. if for any $n \neq m$, $c_n \cap c_m = 0$. $\vec{C}(n)$ denotes c_n . For an $\eta \in 2^{\leq s}$, we define

$$I_{\eta} = \left\{ \vec{C} : \vec{C} \text{ is p.w.d. and } \forall \beta < \operatorname{dom}(\eta) \forall^{\infty} n \in \omega \left[\vec{C}(n) \subset e_{\beta}^{\eta(\beta)} \right] \right\}.$$

- At a stage α < c, we are given an increasing sequence ⟨*T_β* : β < α⟩ of subtrees of 2^{<κ}, as well as an almost disjoint family 𝔄_α = {a_β : β < α}.
- We ensure that for each $\beta < \alpha$, $a_{\beta} = \bigcup_{n \in \omega} d_n^{\beta}$, where $\vec{D}^{\beta} = \langle d_n^{\beta} : n \in \omega \rangle$ is a p.w.d.

(日)

- At a stage α < c, we are given an increasing sequence ⟨*T_β* : β < α⟩ of subtrees of 2^{<κ}, as well as an almost disjoint family 𝔄_α = {a_β : β < α}.
- We ensure that for each $\beta < \alpha$, $a_{\beta} = \bigcup_{n \in \omega} d_n^{\beta}$, where $\vec{D}^{\beta} = \langle d_n^{\beta} : n \in \omega \rangle$ is a p.w.d.
- Moreover, to each a_{β} and each d_n^{β} , we associate nodes $\eta(a_{\beta}) \in \mathcal{T}_{\beta}$ and $\eta(d_n^{\beta}) \in \mathcal{T}_{\beta}$ such that the following conditions hold:

- At a stage α < c, we are given an increasing sequence ⟨*T_β* : β < α⟩ of subtrees of 2^{<κ}, as well as an almost disjoint family *A_α* = {a_β : β < α}.
- We ensure that for each $\beta < \alpha$, $a_{\beta} = \bigcup_{n \in \omega} d_n^{\beta}$, where $\vec{D}^{\beta} = \langle d_n^{\beta} : n \in \omega \rangle$ is a p.w.d.
- Moreover, to each a_{β} and each d_n^{β} , we associate nodes $\eta(a_{\beta}) \in \mathcal{T}_{\beta}$ and $\eta(d_n^{\beta}) \in \mathcal{T}_{\beta}$ such that the following conditions hold:

- Important that $\eta(a_{\beta}) \neq \eta(a_{\gamma})$ for all $\gamma < \beta < \alpha$.
- Also $\eta(d_n^\beta) \neq \eta(d_m^\gamma)$ for all $\langle \beta, n \rangle \neq \langle \gamma, m \rangle$ where $\beta, \gamma < \alpha$, and $n, m \in \omega$,
- Finally $\eta(a_{\beta}) \neq \eta(d_m^{\gamma})$ for all $\beta, \gamma < \alpha$, and $m \in \omega$.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

- $\bigcup_{\beta < \alpha} \mathcal{T}_{\beta} = \{ \sigma \in 2^{<\kappa} : \exists \xi < \alpha \left[\sigma \subset \eta(a_{\xi}) \lor \exists n \in \omega \left[\sigma \subset \eta(d_n^{\xi}) \right] \} \}.$
- Thus $\bigcup_{\beta < \alpha} \mathcal{T}_{\beta}$ is the union of $< \mathfrak{c}$ chains.

э

•
$$\bigcup_{\beta < \alpha} \mathcal{T}_{\beta} = \left\{ \sigma \in 2^{<\kappa} : \exists \xi < \alpha \left[\sigma \subset \eta(a_{\xi}) \lor \exists n \in \omega \left[\sigma \subset \eta(d_n^{\xi}) \right] \right] \right\}.$$

• Thus $\bigcup_{\beta < \alpha} \mathcal{T}_{\beta}$ is the union of $< \mathfrak{c}$ chains.

Lemma

Let $b \in I^+(\mathscr{A}_{\delta})$. There is a $c \in [b]^{\omega}$ which is a.d. from a_{β} for every $\beta < \alpha$, and a $\tau \in (2^{<\mathfrak{s}}) \setminus \left(\bigcup_{\beta < \alpha} \mathcal{T}_{\beta}\right)$ such that $\forall \delta < \operatorname{dom}(\tau) \left[c \subset^* e_{\delta}^{\tau(\delta)}\right]$.

- The proof is just as before, but just a slight twist.
- Before we relied on the fact that if the node associated with a_{α} and the node associated with a_{β} are incomparable, then a_{α} and a_{β} are automatically a.d
- This is not true anymore.

- But because of the way we have set things up, it is enough to have $\tau \notin (\bigcup_{\beta < \alpha} \mathcal{T}_{\beta})$.
- By the usual construction we can arrange to have τ ∉ (∪_{β<α}T_β), as well as c ∈ [b]^ω such that ∀ξ < dom(τ) [c ⊂* e^{τ(ξ)}_{τ|ξ}] and |c ∩ d^β_n| < ω for all β < α and n ∈ ω.

伺 ト イ ヨ ト イ ヨ ト

- But because of the way we have set things up, it is enough to have $\tau \notin (\bigcup_{\beta < \alpha} \mathcal{T}_{\beta})$.
- By the usual construction we can arrange to have τ ∉ (∪_{β<α}T_β), as well as c ∈ [b]^ω such that ∀ξ < dom(τ) [c ⊂* e^{τ(ξ)}_{τ↾ξ}] and |c ∩ d^β_n| < ω for all β < α and n ∈ ω.
- Now, if τ and η_{β} are incomparable, then for some $\xi < \operatorname{dom}(\tau)$, $c \subset^* e_{\tau \upharpoonright \xi}^{\tau(\xi)}$ and there is some $n \in \omega$ such that $\forall m \ge n \left[d_m^{\beta} \subset e_{\tau \upharpoonright \xi}^{1-\tau(\xi)} \right]$. So $\left| c \cap \left(\bigcup_{m \ge n} d_m^{\beta} \right) \right| < \omega$.
- On the other hand, for any m < n, $\left| c \cap d_m^\beta \right| < \omega$. So $\left| c \cap \left(\bigcup_{m < n} d_m^\beta \right) \right| < \omega$.

- Now we can prove the theorem.
- We are at a stage α < c and we are given {b_n : n ∈ ω} ⊂ [ω]^ω such that for each n ∈ ω, b_n ∈ I⁺(A_α).
- Applying a previous lemma find $c_n \in [b_n]^{\omega}$ and nodes $\tau_n \in 2^{<\mathfrak{s}}$ such that
 - **1** c_n is a.d. from a_β for all $\beta < \alpha$;
 - $\forall \xi < \operatorname{dom}(\tau_n) \left[c_n \subset^* e_{\xi}^{\tau_n(\xi)} \right];$

A (10) × A (10) × A (10) ×

- WLOG the $\vec{C}_0 = \langle c_n : n \in \omega \rangle$ is a p.w.d.
- Look for least $\gamma_0 < \mathfrak{s}$ such that $\exists^{\infty} n \in \omega \left[|c_n \cap e^0_{\gamma_0}| = \omega \right]$ and $\exists^{\infty} n \in \omega \left[|c_n \cap e^1_{\gamma_0}| = \omega \right]$.
- There is a unique $\tau_0 \in 2^{\alpha_0}$ such that

$$\forall \xi < \alpha_0 \forall i \in 2 \left[\tau_0(\xi) = i \leftrightarrow \exists^{\infty} n \in \omega \left[\left| c_n \cap e^i_{\xi} \right| = \omega \right] \right].$$

(日)

- WLOG the $\vec{C}_0 = \langle c_n : n \in \omega \rangle$ is a p.w.d.
- Look for least $\gamma_0 < \mathfrak{s}$ such that $\exists^{\infty} n \in \omega \left[\left| c_n \cap e_{\gamma_0}^0 \right| = \omega \right]$ and $\exists^{\infty} n \in \omega \left[\left| c_n \cap e_{\gamma_0}^1 \right| = \omega \right]$.
- There is a unique $au_0 \in 2^{\alpha_0}$ such that

$$\forall \xi < \alpha_0 \forall i \in 2 \left[\tau_0(\xi) = i \leftrightarrow \exists^{\infty} n \in \omega \left[\left| c_n \cap e^i_{\xi} \right| = \omega \right] \right].$$

 Proceeding in this way, build sequences ⟨α_s : s ∈ 2^{<ω}⟩ ⊂ s, ⟨τ_s : s ∈ 2^{<ω}⟩ ⊂ 2^{<s}, ⟨C
 ^c s ∈ 2^{<ω}⟩, and ⟨z_s : s ∈ 2^{<ω}⟩ ⊂ [ω]^ω such that:

$$\forall s \in 2^{<\omega} \forall i \in 2 [\alpha_s = \operatorname{dom}(\tau_s) \land \alpha_{s^\frown(i)} > \alpha_s \land \tau_{s^\frown(i)} \supset \tau_s^\frown \langle i \rangle];$$

$$\Rightarrow \text{ The domain of } \vec{C}_s = z_s \text{ (so } z_0 = \omega \text{) and } z_{s^\frown(i)} \subset z_s;$$

$$\Rightarrow \text{ For all } n \in z_{s^\frown(i)} [\vec{C}_{s^\frown(i)}(n) \subset \vec{C}_s(n)]$$

$$\Rightarrow \text{ for each } s \in 2^{<\omega} \text{ and for each } \xi < \alpha_s, \forall^{\infty} n \in z_s [e_{\xi}^{1-\tau_s(\xi)} \cap \vec{C}_s(n)] < \omega;$$

(5) for each
$$s \in 2^{<\omega}$$
, both $\exists^{\infty} n \in \omega \left[\left| e^{0}_{\alpha_{s}} \cap \vec{C}_{s}(n) \right| = \omega \right]$ and
 $\exists^{\infty} n \in \omega \left[\left| e^{1}_{\alpha_{s}} \cap \vec{C}_{s}(n) \right| = \omega \right]$;
(6) for $n \in z_{s \cap \langle i \rangle}$, $\vec{C}_{s \cap \langle i \rangle}(n) = \vec{C}_{s}(n) \cap e^{i}_{\alpha_{s}}$.

イロト イロト イヨト イヨト

€ 990

• For each
$$f \in 2^{\omega}$$
, put $\alpha_f = \sup \{ \alpha_{(f \upharpoonright n)} : n \in \omega \}$ and $\tau_f = \bigcup_{n \in \omega} \tau_{(f \upharpoonright n)}$.

• Again, we have $\alpha_f < \kappa$.

イロト イロト イヨト イヨト

Э.

- For each $f \in 2^{\omega}$, put $\alpha_f = \sup \{ \alpha_{(f \upharpoonright n)} : n \in \omega \}$ and $\tau_f = \bigcup_{n \in \omega} \tau_{(f \upharpoonright n)}$.
- Again, we have $\alpha_f < \kappa$.
- Again we can find $f \in 2^{\omega}$ such that $\tau_f \notin \bigcup_{\beta < \alpha} \mathcal{T}_{\beta} \cup \{\sigma : \exists n \in \omega \ [\sigma \subset \tau_n]\}.$
- Take a $z = k_0 < k_1 < \cdots$ such that $\forall n \in \omega [k_n \in z_{f \upharpoonright n}]$. For each $n \in \omega$ define $\vec{E}(k_n) = \vec{C}_{f \upharpoonright (n)}(k_n)$.

• for each $\delta < \alpha_f$, define a function $f_{\delta} : z \to \omega$ by

$$f_{\delta}(n) = \begin{cases} \max\left(\vec{E}(n) \cap e_{\delta}^{1-\tau_{f}(\delta)}\right) & \text{if } \left|\vec{E}(n) \cap e_{\delta}^{1-\tau_{f}(\delta)}\right| < \omega\\ 0 & \text{otherwise} \end{cases}$$

The second case only occurs finitely often.

- Also let *G* be the set of β < α such that either η(a_β) ⊊ τ_f or that there is an m ∈ ω so that η(d^β_m) ⊊ τ_f.
- $|G| \le |\alpha_f| < \mathfrak{s} \le \mathfrak{b}.$
- *a_β* is a.d. from *E*(*k_n*) for each *n* ∈ ω and each β ∈ G. So each β ∈ G determines a function *g_β* : *z* → ω

• for each $\delta < \alpha_f$, define a function $f_{\delta} : z \to \omega$ by

$$f_{\delta}(n) = \begin{cases} \max\left(\vec{E}(n) \cap e_{\delta}^{1-\tau_{f}(\delta)}\right) & \text{if } \left|\vec{E}(n) \cap e_{\delta}^{1-\tau_{f}(\delta)}\right| < \omega\\ 0 & \text{otherwise} \end{cases}$$

The second case only occurs finitely often.

- Also let *G* be the set of β < α such that either η(a_β) ⊊ τ_f or that there is an m ∈ ω so that η(d^β_m) ⊊ τ_f.
- $|G| \le |\alpha_f| < \mathfrak{s} \le \mathfrak{b}.$
- *a_β* is a.d. from *E*(*k_n*) for each *n* ∈ ω and each β ∈ G. So each β ∈ G determines a function *g_β* : *z* → ω
- $\{f_{\delta} : \delta < \alpha_f\}$ is a collection of functions of size at most $< \mathfrak{s} \leq \mathfrak{b}$.
- Find $f \in \omega^z$ such that $\forall \delta < \alpha_f [f_\delta <^* f]$.
- For each $n \in \omega$ define $D^{\alpha}(n) = \vec{E}(k_n) \setminus f(k_n)$.

•
$$a_{\alpha} = \bigcup_{n \in \omega} D^{\alpha}(n)$$
 and $\eta(a_{\alpha}) = \tau_f$

Bibliography

D. Raghavan and J. Steprāns, *On weakly tight families*, Canad. J. Math. **64** (2012), no. 6, 1378–1394.

イロト イポト イヨト イヨト